Respuesta :

Answer:

y = - [tex]\frac{4}{3}[/tex] x + [tex]\frac{13}{3}[/tex]

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

y = [tex]\frac{3}{4}[/tex] x + 1 ← is in slope- intercept form

with slope m = [tex]\frac{3}{4}[/tex]

Given a line with slope m then the slope of a line perpendicular to it is

[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{\frac{3}{4} }[/tex] = - [tex]\frac{4}{3}[/tex] , thus

y = - [tex]\frac{4}{3}[/tex] x + c ← is the partial equation

To find c substitute (- 5, 11) into the partial equation

11 = [tex]\frac{20}{3}[/tex] + c ⇒ c = 11 - [tex]\frac{20}{3}[/tex] = [tex]\frac{13}{3}[/tex]

y = - [tex]\frac{4}{3}[/tex] x + [tex]\frac{13}{3}[/tex] ← equation of perpendicular line