An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process, air is at 95 kPa and 27 degree Celsius.
(a) Determine the temperature after the heat-addition process.
(b) Determine the thermal efficiency.
(c) Determine the mean effective pressure. Solve the problem in the constant heat supposition.

Respuesta :

Answer:

a) T₃ = 1818.8 K

b) η = 0.614 = 61.4%

c) MEP = 660.4 kPa

Explanation:

a) According to Table A-2 of The ideal gas specific heat of gases, the properties of air are as following:

At 300K

The specific heat capacity at constant pressure = [tex]c_{p}[/tex] = 1.005 kJ/kg.K,

The specific heat capacity at constant volume = [tex]c_{v}[/tex] = 0.718 kJ/kg.K

Gas constant R for air = 0.2870 kJ/kg·K

Ratio of specific heat  k = 1.4

Isentropic Compression :

[tex]T_{2}[/tex] =  [tex]T_{1}[/tex]  [tex](v1/v2)^{k-1}[/tex]

   = 300K ([tex]16^{0.4}[/tex])

[tex]T_{2}[/tex]    = 909.4K

P = Constant heat Addition:

[tex]P_{3}v_{3} / T_{3} = P_{2} v_{2} /T_{2}[/tex]

[tex]T_{3}=v_{3}/v_{2}T_{2}[/tex]

2[tex]T_{2}[/tex] = 2(909.4K)

      = 1818.8 K

b) [tex]q_{in}[/tex] = [tex]h_{3}-h_{2}[/tex]

         =  [tex]c_{p}[/tex] ([tex]T_{3}[/tex] - [tex]T_{2}[/tex])

         = (1.005 kJ/kg.K)(1818.8 - 909.4)K

         = 913.9 kJ/kg

Isentropic Expansion:

[tex]T_{4}[/tex] =  [tex]T_{3}[/tex]  [tex](v3/v4)^{k-1}[/tex]

    =  [tex]T_{3}[/tex] [tex](2v_{2} /v_{4} )^{k-1}[/tex]

    = 1818.8 K (2 / 16[tex])^{0.4}[/tex]

    = 791.7K

v = Constant heat rejection

[tex]q_{out}[/tex] = μ₄ - μ₁

      = [tex]c_{v} ( T_{4} - T_{1} )[/tex]

      = 0.718 kJ/kg.K (791.7 - 300)K

      = 353 kJ/kg

 η[tex]_{th}[/tex] = 1 - [tex]q_{out}[/tex] / [tex]q_{in}[/tex]

       = 1 - 353 kJ/kg / 913.9 kJ/kg

       = 1 - 0.38625670

       = 0.6137

       = 0.614

      = 61.4%

c) [tex]w_{net}._{out}[/tex] = [tex]q_{in}[/tex] - [tex]q_{out}[/tex]

                = 913.9 kJ/kg - 353 kJ/kg

                = 560.9 kJ/kg

[tex]v_{1} = RT_{1} /P_{1}[/tex]

   = (0.287 kPa.m³/kg/K)*(300 K) / 95 kPa

   =  86.1 / 95

   = 0.9063 m³/kg = v[tex]_{max}[/tex]

[tex]v_{min} =v_{2} = v_{max} /r[/tex]

Mean Effective Pressure = MEP =   [tex]w_{net,out}/v_{1} -v_{2}[/tex]

                                                    = [tex]w_{net,out}/v_{1}(1-1)/r[/tex]

                                                    = 560.9 kJ/kg / (0.9063 m³/kg)*(1-1)/16

                                                    = (560.9 kJ / 0.8493m³) (kPa.m³/kJ)

                                                    = 660.426 kPa

Mean Effective Pressure = MEP = 660.4 kPa

The temperature after the addition process is 1724.8k, the thermal efficiency of the engine is 56.3% and the mean effective pressure is 65.87kPa

Assumptions made:

  • The air standard assumptions are made
  • The kinetic and potential energy changes are negligible
  • The air in the system is an ideal gas with variable or different specific heat capacity.

a) The temperature after the addition process:

Considering the process 1-2, Isentropic expansion

at

[tex]T_1=300k\\u_1=214.07kJ/kg\\v_o_1=621.3\\v_o_2=\frac{v_2}{v_1} *v_o_1[C.R=16]=v_2/v_1\\v_o_2=(v_2/v_1)v_o_1=1/16*621.2=38.825[/tex]

From using this value, v[tex]_o_2[/tex]=38.825, solve for state point 2;

[tex]T_2=862.4k\\h_2=890.9kJ/kg[/tex]

Considering the process 2-3 (state of constant heat addition)

[tex]\frac{p_3v_3}{t_3}=\frac{p_2v_2}{t_2} \\\\T_3=\frac{P_3V_3T_2}{V_2} \\T_3=(\frac{V_3}{V_2}) T_2\\\frac{v_3}{v_2}=2\\T_3=2(862.4)=1724.8k\\[/tex]

NB: p[tex]_3[/tex]≈p[tex]_2[/tex]

b) The thermal efficiency of the engine is

Q[tex]_i_n[/tex]=h[tex]_3-h_2[/tex] = 1910.6-890.9=1019.7kJ/kg

Considering process 3-4,

[tex]v_o_4=\frac{v_A}{v_2}\\ v_o_3 =\frac{V_a}{V_2}*\frac{v_2}{v_3}\\v_o_3=\frac{16}{2}*4.546\\v_o_3=36.37;v_4=659.7kJ/kg[/tex]

Q[tex]_o_u_t=v_4-u_1=659.7-214.07=445.3kJ/kg[/tex]

nth = [tex]1-\frac{Q_o_u_t}{Q_i_n}=1-\frac{445.63}{1019.7}=0.5629*100=56.3%[/tex]%

The thermal efficiency is 56.3%

W[tex]_n_e_t[/tex]=[tex]Q_i_n-Q_o_u_t=574.07kJ/kg[/tex]

[tex]v_1=\frac{RT_1}{p_1}=\frac{0.287*300}{95}=0.906m^3/kg\\v_2=v_1/16=0.05662m^3/kg\\[/tex]

Therefore, the mean effective pressure of the system engine is

[tex]\frac{W_n_e_t}{v_1-v_2}=675.87kPa[/tex]

The mean effective pressure is 65.87kPa as calculated above

Learn more about mean effective pressure

https://brainly.com/question/19309495

Ver imagen lhabdulsamirahmed