Respuesta :

[tex]\dfrac{95^o}{360^o}=\dfrac{19}{72}\\\\Perimeter\ of\ the\ circle:L=2\pi\cdot6=12\pi\approx12\cdot3.14=37.68\\\\\widehat{DG}=\dfrac{19}{72}\cdot37.68\approx9.95\\\\Answer:\boxed{9.95}[/tex]
Degrees: [tex]s = \frac{\pi}{180}\theta r[/tex]
                [tex]s = \frac{\pi}{180}(\frac{s}{r})(r)[/tex]
                [tex]s = \frac{\pi}{180}(\frac{95}{6})(6)[/tex]
                [tex]s = \frac{\pi}{180}(15.8\bar{3})(6)[/tex]
                [tex]s = \frac{\pi}{180}(95)[/tex]
                [tex]s = \frac{95\pi}{180}[/tex]
                [tex]s = \frac{19\pi}{36}[/tex]
                [tex]s = 95\°[/tex]

Radians: [tex]s = \theta r[/tex]
               [tex]s = \frac{95}{6}(6)[/tex]
               [tex]s = 95[/tex]
               [tex]s = \frac{19\pi}{36}[/tex]

Arc Length = [tex]\frac{\theta}{360} * C[/tex]
Arc Length = [tex]\frac{95}{360} * 2(3.14)(6)[/tex]
Arc Length = [tex]\frac{19}{72} * 2(18.84)[/tex]
Arc Length = [tex]\frac{19}{72} * 37.68[/tex]
Arc Length = [tex]\frac{715.92}{72}[/tex]
Arc Length = [tex]9.94\bar{3}[/tex]

The answer is A.