Respuesta :

caylus
Hello,

I suppose you want the 4 numbers.

Let's call the numbers [tex]2n,2n+2,2n+4,2n+6[/tex]
[tex]2n+2n+2+2n+4+2n+6[=8n+12=15*4\\ 8n+12=60\\ 8n=48\\ n=6\\\\ 2n=12\\ 2n+2=14\\ 2n+4=16\\ 2n+6=18\\ [/tex]


Let x be the first even number. Then adding 2 consecutively gives us the subsequent even numbers. That is

[tex]x,x+2,x+4,x+6[/tex]

From the question, the mean of these four numbers is 15. That is;

[tex]\frac{\sum x}{n} =15[/tex]

[tex]\Rightarrow \frac{x+(x+2)+(x+4)+(x+6)}{4} =15[/tex]

[tex]\Rightarrow \frac{x+x+2+x+4+x+6}{4} =15[/tex]

[tex]\Rightarrow \frac{x+x+x+x+2+4+6}{4} =15[/tex]

[tex]\Rightarrow \frac{4x+12}{4} =15[/tex]

Multiply both sides by 4 to obtain,

[tex]\Rightarrow 4\times \frac{4x+12}{4} =4 \times15[/tex]

[tex]\Rightarrow 4x+12 =60[/tex]

[tex]\Rightarrow 4x =60-12[/tex]

[tex]\Rightarrow 4x =48[/tex]

Divide both sides by 4 to obtain,

[tex]x =12[/tex]

Hence the greatest of the numbers is [tex]12+6=18[/tex]

and the least of the numbers is [tex]12[/tex].