Respuesta :
This problem applies momentum balance over the cars collided
m1v1y + m2v2y = (m1 + m2)v'y
0 + (1500 kg)(25.0 m/s) = (2500 kg)v'y
v'y = 15.0 m/s
Find the vector sum of the velocities:
v^2 = v'x^2 + v'y^2 = (8.00 m/s)^2 + (15.0 m/s)^2
v = 17.0 m/s
find the angle: θ = tan^-1(15.0 m/s / 8.00 m/s) = 61.9°
now, the momentum: p = mv = (2500 kg)(17.0 m/s)
p = 4.25 x 10^4 kg x m/s at 61.9° N of E
m1v1y + m2v2y = (m1 + m2)v'y
0 + (1500 kg)(25.0 m/s) = (2500 kg)v'y
v'y = 15.0 m/s
Find the vector sum of the velocities:
v^2 = v'x^2 + v'y^2 = (8.00 m/s)^2 + (15.0 m/s)^2
v = 17.0 m/s
find the angle: θ = tan^-1(15.0 m/s / 8.00 m/s) = 61.9°
now, the momentum: p = mv = (2500 kg)(17.0 m/s)
p = 4.25 x 10^4 kg x m/s at 61.9° N of E
Answer:
[tex]\vec v = 12\hat i + 9.09 \hat j m/s[/tex]
Explanation:
During the collision of two cars there is no external force on this system
so the total momentum of two cars will remains conserved
so we will have
[tex]P_1 + P_2 = P_f[/tex]
[tex]P_1 = 1000(20)\hat j[/tex]
[tex]P_2 = 1200(22)\hat i[/tex]
now when two cars collide inelastically then they will move together after collision
so we have
[tex]20000\hat j + 26400\hat i = (1200 + 1000) \vec v[/tex]
[tex]9.09\hat j + 12\hat i = \vec v[/tex]