A box is sliding down an incline tilted at a 11.6° angle above horizontal. The box is initially sliding down the incline at a speed of 1.10 m/s. The coefficient of kinetic friction between the box and the incline is 0.390. How far does the box slide down the incline before coming to rest?

Respuesta :

Answer:

0.34 m

Explanation:

We are given that

[tex]\theta=11.6^{\circ}[/tex]

Initial speed of box=u=1.1 m/s

Coefficient of friction,[tex]\mu=0.39[/tex]

We have to find the distance slide down by the box before coming to rest.

Friction force=f=[tex]\mu mg=[/tex]

Where [tex]g=9.8 m/s^2[/tex]

Net force=[tex]mgsin\theta-\mu mg[/tex]

[tex]ma=mg(sin\theta-\mu cos\theta)[/tex]

[tex]a=g(sin\theta-\mu cos\theta)[/tex]

Substitute the values

[tex]a=9.8(sin11.6-0.39cos11.6)=9.8(-0.18)=-1.76 m/s^2[/tex]

[tex]v=0[/tex]

[tex]v^2-u^2=2as[/tex]

Substitute the values

[tex]0-(1.1)^2=2(-1.76)s[/tex]

[tex]-3.52s=-(1.1)^2[/tex]

[tex]s=\frac{-(1.1)^2}{-3.52}[/tex]

[tex]s=0.34 m[/tex]

Hence, the box slide down the incline 0.34 m before coming to rest.