Explanation:
We know that the relation between volume and density is as follows.
Volume = [tex]\frac{\text{mass}}{\text{density}}[/tex]
So, V = [tex]\frac{10^{-3}}{19.3 \times 10^{3} kg/m^{3}}[/tex]
= [tex]5.181 \times 10^{-8} m^{3}[/tex]
Now, we will calculate the area as follows.
Area = [tex]\frac{\text{volume}}{\text{length}}[/tex]
= [tex]\frac{5.181 \times 10^{-8} m^{3}}{2.4 \times 10^{3}}[/tex]
= [tex]2.15 \times 10^{-11} m^{2}[/tex]
Formula to calculate the resistance is as follows.
R = [tex]\rho \frac{l}{A}[/tex]
= [tex]\frac{2.44 \times 10^{-8} \times 2400}{}2.15 \times 10^{-11}}[/tex]
= [tex]2.71 \times 10^{6} ohm[/tex]
Thus, we can conclude that the resistance of given wire is [tex]2.71 \times 10^{6} ohm[/tex].