Answer:
The value of final temperature of the mixture of gases when the partition is removed [tex]T_{3}[/tex] = 341.08 K
Explanation:
For box 1
Mass [tex]m_{1}[/tex] = 0.4 mole
Temperature [tex]T_{1}[/tex] = 20.08 °c = 293.08 K
Pressure [tex]P_{1}[/tex] = 1 atm = 101.325 K pa
For box 2
Mass [tex]m_{2}[/tex] = 0.6 mole
Temperature [tex]T_{2}[/tex] = 373.08 K
Pressure [tex]P_{2}[/tex] = 2 atm = 202 K pa
When the partition removed, both gases mixes together. then the final mass
[tex]m_{3}[/tex] = [tex]m_{1}[/tex] + [tex]m_{2}[/tex]
[tex]m_{3}[/tex] = 0.4 + 0.6
[tex]m_{3}[/tex] = 1.0 mole
This is the final mass in the container.
Final temperature is given by the equation,
[tex]m_{1}[/tex] [tex]T_{1}[/tex] + [tex]m_{2}[/tex] [tex]T_{2}[/tex] = [tex]m_{3}[/tex] [tex]T_{3}[/tex]
Put all the values in the above equation we get,
0.4 × 293.08 + 0.6 × 373.08 = 1 × [tex]T_{3}[/tex]
[tex]T_{3}[/tex] = 341.08 K
This is the value of final temperature of the mixture of gases when the partition is removed.