Answer:
[tex]f(g(x))=6x^3} +4[/tex]
Step-by-step explanation:
Given:
[tex]f(x)=2x^2+4\\\\g(x)=\sqrt{3x^3}[/tex]
Required:
f(g(x))=?
Solution:
let f(g(x))=f(X), where X=g(x)
so [tex]f(X)=2X^2+4[/tex]
put X=[tex]g(x)=\sqrt{3x^3}[/tex], we get
[tex]f(g(x))=2(\sqrt{3x^3} )^2+4[/tex]
[tex]f(g(x))=2(\sqrt{3x^3} )^2+4\\\\f(g(x))=2({3x^3} )+4\\\\f(g(x))=6x^3} +4[/tex]