Answer:
Speed of larger piece is [tex]\dfrac{V\sqrt{2}}{3}[/tex]
Explanation:
We apply the principle of conservation of momentum.
The watermelon is initially at rest. The initial momentum = 0 kg m/s in all directions.
After the collision,
Vertical momentum = momentum of piece in y-direction + y-component of momentum of larger piece = [tex]mV + 3mv_{ly}[/tex]
Here, [tex]v_{ly}[/tex] is the y-component of velocity of larger piece.
This is equal to 0, since the initial momentum is 0.
[tex]v_{ly}=\dfrac{V}{3}[/tex]
Horizontal momentum = momentum of piece in x-direction + x-component of momentum of larger piece = [tex]mV + 3mv_{lx}[/tex]
Here, [tex]v_{lx}[/tex] is the x-component of velocity of larger piece.
This is also equal to 0, since the initial momentum is 0.
[tex]v_{lx}=\dfrac{V}{3}[/tex]
The velocity of the larger piece, [tex]v_l[/tex], is the resultant of [tex]v_{lx}[/tex] and [tex]v_{ly}[/tex]. Since they are mutually perpendicular,
[tex]v_l = \sqrt{v_{ly}^2+v_{lx}^2}= \sqrt{\left(\dfrac{V}{3}\right)^2+\left(\dfrac{V}{3}\right)^2}[/tex]
[tex]v_l = \dfrac{V\sqrt{2}}{3}[/tex]