The data below were obtained for the adsorption of CO on charcoal at 273 K using an instrument that measures the volume (corrected to 1 atm pressure) of gas molecules that become adsorbed onto a surface as a function of its pressure in the surround gas phase. Such measurements are commonly performed in order to quantify the surface area of a material. The charcoal sample had a mass of 0.5 g and a CO adsorption site density of 5x10¹⁵ cm⁻².

Pco (torr) 100 200 300 400 500 600 700
V (cm³) 10.3 19.3 27.3 34.1 40 45.5 48


(a) Is the data consistent with a Langmuir isotherm? Support your answer. Hint: you will need to modify the Langmuir isotherm for a single species to convert θ_a to V.
(b) Determine the adsorption equilibrium ratio (Kco) and the volume of CO that is adsorbed at complete coverage.
(c) What is the total surface area (S_a) of the piece of charcoal in m² per gram of charcoal?

Respuesta :

Answer:

The answers to the questions are;

(a) The data consistent with a Langmuir isotherm

(b) The adsorption equilibrium ratio (Kco) is 0.696 bar⁻¹ and

the volume of CO that is adsorbed at complete coverage, V[tex]_m[/tex] is 123.09 cm³

(c) The total surface area (S_a) of the piece of charcoal in m² per gram of charcoal is 66.16 m²/gm.

Explanation:

(a) Yes the data is consistent with Langmuir isotherm as it satisfies the following equation

[tex]V = \frac{V_m\times K \times P}{1 +K \times P}[/tex]

That is a plot of the data forms a straight line of the form  [tex]\frac{P}{V} = \frac{1}{V_m\times K}+\frac{P}{V_m}[/tex] where the intercept is [tex]\frac{1}{V_m\times K}[/tex] and the slope is [tex]\frac{1}{V_m}[/tex]

The values of the plot are as follows;

Pco/V                                         Pco (bar)                           V (cm³)  

0.012943919                             0.133322368                 10.3

0.013815789                             0.266644737                19.3

0.01465081                               0.399967105                 27.3

0.015638987                            0.533289474                 34.1

0.016665296                            0.666611842                  40

0.017580972                             0.799934211                 45.5

0.019442845                             0.933256579                  48

 

 

Slope 1/V[tex]_m[/tex]      = 0.008124326  cm⁻³

    V[tex]_m[/tex] =  123.0871369  cm³

1/(V[tex]_m[/tex]×K) =   0.011670999  bars/cm³

K         =0.696112311  bar⁻¹

(b) From the graph, the slope is given as = 0.008124326, that is

 [tex]\frac{1}{V_m}[/tex] = 0.008124326 and V[tex]_m[/tex] =[tex]\frac{1}{0.008124326 cm^{-3}}[/tex] = 123.09 cm³

The intercept is given as =  0.011670999

.

Therefore, [tex]\frac{1}{V_m\times K}[/tex] = 0.011670999 bars/cm³ and

K[tex]_{co}[/tex] = [tex]\frac{1}{123.09 cm^3*0.011670999 bars/cm^3}[/tex] = 0.696 bar⁻¹.

(c) The CO adsorption site density is given as 5 x 10¹⁵ cm⁻²

Therefore the we have the specific volume given as

[tex]\frac{V}{n} = \overline{\rm V} =\frac{RT}{P}[/tex] = [tex]\frac{(0.0821L \cdot atm/moles \cdot K)(273K)}{1 atm}[/tex] = 22.41 l

With a CO adsorption site density of  5 x 10¹⁵ cm⁻² we have

CO molecule cross sectional area, σ, given as  [tex]\frac{1}{5*10^{15} cm^{-2}}[/tex]  =   2 x 10⁻¹⁶ cm²

Therefore we have

Area A = [tex]\frac{\sigma \cdot N_A \cdot V_m}{\overline{\rm V}}[/tex] = [tex]\frac{(2\times 10^{-16} cm^2)(6.02\times 10^{23}mole ^{-1})(123.09 cm^3/gm)}{22400 cm^3}[/tex] = 6.62 x 10⁵ cm²/gm

= ‪66.16 m²/gm.  

Ver imagen oeerivona
Ver imagen oeerivona