Respuesta :

Answer:

-2.92178

Step-by-step explanation:

Given the function [tex]f(x)=3x\ sin x[/tex]

The average,A is calculated using the formula;

[tex]A=\frac{1}{b-a}\int\limits^a_b F(x)\, dx \\\\A=\frac{1}{7-1}\int\limits^7_1 3x \ Sin \ x\, dx \\\\\\=\frac{3}{6}\int\limits^7_1 x \ Sin \ x\, dx \\\\\#Integration\ by\ parts, u=x, v \prime=sin(x)\\=0.5[-xcos(x)-\int-cos(x)dx]\limits^7_1\\\\=0.5[-xcos(x)-(-sin(x))]\limits^7_1\\\\=0.5[-xcos(x)+sin(x)]\limits^7_1\\\\=0.5[-6.82595--0.98240]\\\\=-2.92178[/tex]

Hence, the average of the function is -2.92178

Integration is way of uniting the part to find a whole.The average value of the given function is -2.922.

Given-

The given function is,

[tex]f(x)=3xsinx[/tex]

Average value of function can be given as,

[tex]A=\dfrac{1}{b-a}\times\int\limits^b_a {f(x}) \, dx }[/tex]

Put the values,

[tex]A=\dfrac{1}{7-1}\times\int\limits^7_1 {3xsinx) \, dx }[/tex]

[tex]A=\dfrac{3}{6}\times\int\limits^7_1 {xsiinx \, dx }[/tex]

Integration

Integration is way of uniting the part to find a whole.

Use integration by parts method to solve the above integration,

[tex]A=\dfrac{3}{2}\times [-xcos+xsiinx ]^{7} _{1}[/tex]

[tex]A=\dfrac{3}{2}\times [-6.826+0.982][/tex]

[tex]A=-2.922[/tex]

Thus, the average value of the given function is -2.922.

For more about the integration, follow the link below

https://brainly.com/question/18651211