Erythromycin is a drug that has been proposed to possibly lower the risk of premature delivery. A related area of interest is its association with the incidence of side effects during pregnancy. Assume that 30% of all pregnant women complain of nausea between the 24th and 28th week of pregnancy. Furthermore, suppose that of 195 women who are taking erythromycin regularly during this period, 65 complain of nausea. Find the p-value for testing the hypothesis that incidence rate of nausea for the erythromycin group is greater than for a typical pregnant woman.

Respuesta :

Answer:

[tex]z=\frac{0.333 -0.3}{\sqrt{\frac{0.3(1-0.3)}{195}}}=1.01[/tex]  

[tex]p_v =P(z>1.01)=0.156[/tex]  

So the p value obtained was a very low value and using the significance level asumed [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIl to reject the null hypothesis, and we can said that at 5% of significance the proportion of women who complain of nausea between the 24th and 28th week of pregnancy is not significantly higher than 0.3 or 30%

Step-by-step explanation:

Data given and notation

n=195 represent the random sample taken

X=65 represent the women who complain of nausea between the 24th and 28th week of pregnancy

[tex]\hat p=\frac{65}{195}=0.333[/tex] estimated proportion of women who complain of nausea between the 24th and 28th week of pregnancy

[tex]p_o=0.3[/tex] is the value that we want to test

[tex]\alpha[/tex] represent the significance level

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that true proportion is higher than 0.3.:  

Null hypothesis:[tex]p\leq 0.3[/tex]  

Alternative hypothesis:[tex]p > 0.3[/tex]  

When we conduct a proportion test we need to use the z statisitc, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.333 -0.3}{\sqrt{\frac{0.3(1-0.3)}{195}}}=1.01[/tex]  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level assumed is [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.  

Since is a right tailed test the p value would be:  

[tex]p_v =P(z>1.01)=0.156[/tex]  

So the p value obtained was a very low value and using the significance level asumed [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIl to reject the null hypothesis, and we can said that at 5% of significance the proportion of women who complain of nausea between the 24th and 28th week of pregnancy is not significantly higher than 0.3 or 30%