Answer:
y=-5/3x+20
Step-by-step explanation:
Let the equation of the required line be represented as [tex]\[y=mx+c\][/tex]
This line is perpendicular to the line [tex]\[y=\frac{3}{5}x+10\][/tex]
[tex]\[=>m*\frac{3}{5}=-1\][/tex]
[tex]\[=>m=\frac{-5}{3}\][/tex]
So the equation of the required line becomes [tex]\[y=\frac{-5}{3}x+c\][/tex]
This line passes through the point (15.-5)
[tex]\[-5=\frac{-5}{3}*15+c\][/tex]
[tex]\[=>c=20\][/tex]
So the equation of the required line is [tex]\[y=\frac{-5}{3}x+20\][/tex]
Among the given options, option 4 is the correct one.