Answer:
Therefore,
[tex]\angle JKL=34.08\°[/tex]Step-by-step explanation:
Given:
KP is the angle bisector of ∠ JKL,
∠JKL = 2y + 25
∠ PKL = 8y - 17
To Find:
∠ JKL = ?
Solution:
KP is the angle bisector of ∠ JKL, .. given
Angle bisector divides the angle in two equal parts such that,
[tex]\angle JKL=2\times \angle PKL[/tex]
Substituting the values we get
[tex]2y+25=2(8y-17)[/tex]
Apply Distributive Property we get
[tex]2y+25=2\times 8y-2\times 17=16y-34\\\\16y-2y=34+25=59\\\\14y=59\\\\y=\dfrac{59}{14}=4.54[/tex]
Now substitute y in JKL
[tex]\angle JKL=2 \times 4.54+25=34.08\°[/tex]
Therefore,
[tex]\angle JKL=34.08\°[/tex]