You are given two infinite, parallel wires each carrying current I. The wires are separated by a distance d, and the current in the two wires is flowing in the same direction. This problem concerns the force per unit length between the wires. Part A Is the force between the wires attractive or repulsive? View Available Hint(s) Is the force between the wires attractive or repulsive? attractive repulsive Submit Part B What is the force per unit length F/L between the two wires? Express your answer in terms of I, d, and constants such as μ0 and π.

Respuesta :

Answer:

a) The force between the two wires is attractive.

b) (F/L) = (μ₀I²)/(2πd)

Explanation:

a) According to Ampere's law, current in the same direction attract, while current in opposite directions repel. So, for this case of two wires carrying curremt in the same direction, the force between the wires is attractive.

b) The force of attraction between two current carrying wires carrying currents of magnitude I₁ and I₂ respectively, at some distance d, apart is given as

F = (μ₀ I₁ I₂ L)/(2πd)

(F/L) = (μ₀ I₁ I₂)/(2πd)

I₁ = I₂ = I

(F/L) = (μ₀I²)/(2πd)

Hope this Helps!!

(a) The force between the two wires is attractive.

(b) The force per unit length between the two wires is (μ₀I²)/(2πd)

Force between two parallel current-carrying wires:

(a) It is given that two wires carry current in the same direction, so the force between the wires will be attractive.

(b) The magnetic force between the two wires carrying currents I₁ and I₂ separated by a distance d, is given by:

dF = I₁dl × B₂ force on wire with current I₁ due to magnetic field of the wire with current I₂

dF = I₁dl ×  (μ₀I₂)/(2πd)

F = (μ₀ I₁ I₂ L)/(2πd)

(F/L) = (μ₀ I₁ I₂)/(2πd)

since I₁ = I₂ = I

(F/L) = (μ₀I²)/(2πd)

Learn more about magnetic force:

https://brainly.com/question/13791875?referrer=searchResults