Write the equation of the line that passes through the point (-5,5) and has a slope of -8/5

A) y= -8/5 x - 3
B) y= -8/5x+3
C) 3x - 5y =0
D) 5x-3y=0

Respuesta :

Answer:

The equation of the line that passes through the point (-5,5) and has a slope of -8/5 will be:

                                           [tex]y=-\frac{8}{5}x-3[/tex]

Step-by-step explanation:

Given

  • [tex]\left(x_1,\:y_1\right)=\left(-5,5\right)[/tex]
  • [tex]m=\frac{-8}{5}[/tex]

Point-Slope Form equation is

[tex]\left(y-y_1\right)=m\left(x-x_1\right)[/tex]

[tex]\left(y-5\right)=\frac{-8}{5}\left(x-\left(-5\right)\right)[/tex]

[tex]\mathrm{Apply\:rule}\:-\left(-a\right)=a[/tex]

[tex]y-5=\frac{-8}{5}\left(x+5\right)[/tex]

[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}[/tex]

[tex]y-5=-\frac{8}{5}\left(x+5\right)[/tex]

[tex]y-5+5=-\frac{8}{5}\left(x+5\right)+5[/tex]

[tex]y=-\frac{8}{5}x-3[/tex]

Therefore, the equation of the line that passes through the point (-5,5) and has a slope of -8/5 will be:

                                           [tex]y=-\frac{8}{5}x-3[/tex]