Answer:
The equation of the line that passes through the point (-5,5) and has a slope of -8/5 will be:
[tex]y=-\frac{8}{5}x-3[/tex]
Step-by-step explanation:
Given
Point-Slope Form equation is
[tex]\left(y-y_1\right)=m\left(x-x_1\right)[/tex]
[tex]\left(y-5\right)=\frac{-8}{5}\left(x-\left(-5\right)\right)[/tex]
[tex]\mathrm{Apply\:rule}\:-\left(-a\right)=a[/tex]
[tex]y-5=\frac{-8}{5}\left(x+5\right)[/tex]
[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}[/tex]
[tex]y-5=-\frac{8}{5}\left(x+5\right)[/tex]
[tex]y-5+5=-\frac{8}{5}\left(x+5\right)+5[/tex]
[tex]y=-\frac{8}{5}x-3[/tex]
Therefore, the equation of the line that passes through the point (-5,5) and has a slope of -8/5 will be:
[tex]y=-\frac{8}{5}x-3[/tex]