Write the equation of the line that passes through the point (-5,5) and has a slope of -8/5

A) y= -8/5 x - 3
B) y= -8/5x+3
C) 3x - 5y =0
D) 5x-3y=0

Respuesta :

Answer:

Therefore, the equation of the line that passes through the point (-5,5) and has a slope of -8/5 will be:

                                             [tex]y=\frac{-8}{5}x-3[/tex]  

Step-by-step explanation:

Given the point (-5, 5)

slope = m = -8/5

Using the slope intercept form:  

[tex]y=mx+b[/tex]

Plugging point (-5, 5) and slope = m = -8/5 in the slope intercept form to find the y-intercept 'b'.

[tex]5=\frac{-8}{5}\left(-5\right)+b[/tex]

[tex]\mathrm{Switch\:sides}[/tex]

[tex]\frac{-8}{5}\left(-5\right)+b=5[/tex]

[tex]8+b=5[/tex]

[tex]8+b-8=5-8[/tex]

[tex]b=-3[/tex]

so the equation of the line will be:

[tex]y=mx+b[/tex]

plugging m = -8/5 and b = -3 in slope intercept form

[tex]y=\frac{-8}{5}x-3[/tex]      

Therefore, the equation of the line that passes through the point (-5,5) and has a slope of -8/5 will be:

                                             [tex]y=\frac{-8}{5}x-3[/tex]