A fence 8 ft high​ (w) runs parallel to a tall building and is 24 ft​ (d) from it. Find the length​ (L) of the shortest ladder that will reach from the ground across the top of the fence to the wall of the building.

Respuesta :

Oseni

Answer:

25.3 ft

Explanation:

The illustration of the problem is shown the attached image.

The length of the ladder can be calculated using the Pythagoras theorem:

[tex]Hypotenuse^2 = opposite^2 + adjacent^2[/tex]

The hypotenuse is the length of the ladder.

[tex]Hypotenuse = \sqrt{opposite^2 + adjacent^2}[/tex]

[tex]L^2 = BC^2 + (24 + AE)^2[/tex]........1

Triangle ABC is similar to triangle AEF, hence:

[tex]\frac{BC}{8} = \frac{AE + 24}{AE}[/tex]

BC = [tex]\frac{8(AE + 24)}{AE}[/tex].................2

Substitute 2 into 1

[tex]L^2[/tex] = [tex](\frac{8(AE + 24)}{AE})^2[/tex] + [tex](24 + AE)^2[/tex]

Let AE = x

[tex]L^2[/tex] = [tex](\frac{8x + 192}{x})^2 + (24 + x)^2[/tex]

    = [tex](8 + \frac{192}{x})^2 + (24 + x)^2[/tex]

Minimize L with respect to x.

2[tex]\frac{dL}{dx}[/tex] = [tex]2(8 + \frac{192}{x})(-\frac{192}{x^2}) + 2(24 + x)[/tex]

       =

Ver imagen Oseni