In the figure, ACD and ECB are straight lines and EF || AD. If
angle FEC = 2 angle CAB, prove that triangle ABC is an isosceles triangle.​

In the figure ACD and ECB are straight lines and EF AD Ifangle FEC 2 angle CAB prove that triangle ABC is an isosceles triangle class=

Respuesta :

Answer:

#See details below

Step-by-step explanation:

#An  isosceles triangle has two equal angles:[tex]\angle FEC=2\angleCAB\\\\\angle FEC=\angle DCB \ \ \ \ \ \#Co-alternate \ angles\\\\\angle ACB= 180 -\angle DCB\ \ \ \ \ \#angles \ on \ a \ straight \ line\\\\\angle CAB=180-\angle ACB=\angle CBA[/tex]

#An  isosceles triangle has two equal sides;

Using sine rule:

[tex]\frac{a}{sin \ A}=\frac{b}{sin \ B}\\\\\frac{ac}{sin B}=\frac{cb}{sin A} \ \ \ \ \ \ \ \ \ \ \ \ #\angle CAB=\angle CBA\\\\\therefore ac=cb[/tex]

Now, given that ABC has two equal sides and two equal triangle it is  an isosceles triangle.