Respuesta :

Answer:

0.25     Converges

Step-by-step explanation:

First, we need to expand our series so that we get the following:

[tex]\sum _{n=1}^{\infty \:}\frac{n}{4^n}+\frac{1}{4^{n+1}}[/tex]

We can then use the series ratio test on each term. (L < 1 = absolutely convergent)

[tex]\sum _{n=1}^{\infty \:}\frac{n}{4^n}[/tex]

[tex]\lim_{n \to \infty} \frac{n}{4^{n}\\}[/tex] =

⇒  converges

[tex]\sum _{n=1}^{\infty \:}\frac{1}{4^n^+1}[/tex]

[tex]\lim_{n \to \infty} \frac{n}{4^{n}^+1\\}[/tex]

⇒  converges

converges + converges

= converges

~Hope this helps! Once again, sorry if my explanation is a bit confusing~