Use Hess's Law or the summation equation to calculate the ΔHrxn. Round to the nearest tenth!! ___NF(g) + ___F2 (g) --> ___NF2 (g) ½N2 (g) + ½F2 (g) -> NF (g) Hf = 86.6 kJ ½N2 (g) + F2 (g) -> NF2 (g) Hf = 33.8 kJ

Respuesta :

Answer:

ΔHrxn = -60 kJ ( to the nearest tenth)

Explanation:

The balanced chemical reaction for the equation is given as;

N2(g) + 3 F2(g) -->  2 NF3(g)

The individual steps are;

½N2 (g) + ½F2 (g) -> NF (g) Hf = 86.6 kJ

Turning the reaction above around (the energy sign would also change), we have;

NF (g) --> ½N2 (g) + ½F2 (g)  Hf = - 86.6 kJ

½N2 (g) + F2 (g) -> NF2 (g) Hf = 33.8 kJ

Adding both reactions above and canceling the common entities, we have;

½N2 (g) + F2 (g) + NF (g) -->  ½N2 (g) + ½F2 (g) +  NF2 (g) Hf = -52.8 kJ

Taking out the common compound in both sides of the reaction, we have;

F2 (g) + NF (g) --> ½F2 (g) +  NF2 (g) Hf = -52.8 kJ

ΔHrxn = - 52.8 kJ

ΔHrxn = -60 kJ ( to the nearest tenth)