Calculate the vapor pressure for a mist of spherical water droplets of radius 3.70×10−8m surrounded by water vapor at 298 K. The vapor pressure of water at this temperature is 25.2 Torr, the density of water is 998 kg⋅m−3, and the surface tension of water is 71.99 mN⋅m−1.

Respuesta :

Answer:

The vapor pressure for a mist is [tex]P= 25.92\ Torr[/tex]

Explanation:

From the question we are given that

        The radius is  [tex]r = 3.70 *10^{-8} m[/tex]

        The temperature is [tex]T = 298K[/tex]

       The vapor pressure of water [tex]P_o = 25.2\ Torr[/tex]

      The density of water is  [tex]\rho = 998 kg.m^{-3}[/tex]

      The surface tension of water is [tex]\sigma = 71.99 m N \cdot m^{-1}[/tex]

Generally the equation of that is mathematically represented as

                            [tex]ln (\frac{P}{P_0} ) = \frac{2 \sigma M}{r \rho RT}[/tex]

 Where  P is the vapor pressure for mist

               R is the  ideal gas constant = 8.31

      making P the subject in the formula

    [tex]P = e^ {\frac{2 \sigma M}{r \rho RT}} * P_0[/tex]

        [tex]= e^{\frac{2 *(0.07199)(0.018)}{(3.70*10^{-8})(998)(8.31)(298)} } * 25.2[/tex]

        [tex]P= 25.92Torr[/tex]