contestada

In an RC series circuit, ε = 12.0 V, R = 1.25 MΩ, and C = 1.42 µF. (a) Calculate the time constant. (b) Find the maximum charge that will appear on the capacitor during charging. (c) How long does it take for the charge to build up to 8.78 µC?

Respuesta :

Answer:

a, 1.775s

b, 17.04μC

c, 1.28s

Explanation:

Given

R = 1.25MΩ

C = 1.42µF

ε = 12.0 V

q = 8.78 µC

Time constant, τ = RC

τ = (1.25*10^6) * ( 1.42*10^-6)

τ = 1.775s

q• = εC

q• = 12 * 1.42*10^-6

q• = 17.04*10^-6C

q• = 17.04μC

Time t =

q = q• [1 - e^(t/τ)]

t = τIn[q•/(q•-q)]

t = 1.775In[17.04μC/(17.04μC-8.78μC)]

t = 1.775In(2.06)

t = 1.775*0.723

t = 1.28s

(a) The time constant is "1.775 s".

(b) The max charge is "17.04 μC".

(c) The time taken is "1.28 s".

Given values,

  • ε = 12.0 V
  • R = 1.25 MΩ
  • C = 1.42 µF
  • q = 8.78 µC

(a)

The time constant will be:

→ [tex]\tau = RC[/tex]

     [tex]= (1.25\times 10^6)\times (1.42\times 10^{-6})[/tex]

     [tex]= 1.77 \ s[/tex]

(b)

The maximum charge will be:

→ [tex]q = \varepsilon C[/tex]

     [tex]= 12\times 1.42\times 10^{-6}[/tex]

     [tex]= 17.04 \ \mu C[/tex]

(c)

The time taken will be:

→ [tex]t = \tau \ ln[\frac{q \cdot}{q \cdot - q} ][/tex]

By putting the values,

     [tex]= 1.775 \ ln[\frac{17.04}{17.04-8.78} ][/tex]

     [tex]= 1.775 \ ln(2.06)[/tex]

     [tex]= 1.775\times 0.723[/tex]

     [tex]= 1.28 \ s[/tex]

Thus the responses above are correct.  

Learn more about charge here:

https://brainly.com/question/15075745