A ball is thrown into the air at a velocity of 44 feet per second. Its height in feet, h after t seconds is represented by the equation h=12t^2+44t+16 after how many seconds will the ball hit the ground

Respuesta :

Answer:

0.447 sec

Explanation:

velocity = distance/ time

distance 'h' is a function of time 't' given by

[tex]h = 12t^{2} + 44t + 16[/tex]

⇒ differentiating equation

⇒ velocity = [tex]\frac{dh}{dt} = 24t + 44[/tex]

⇒ acceleration = [tex]\frac{d^{2}h }{dt^{2} }[/tex] = 24 [tex]\frac{ft}{sec^{2} }[/tex]

deceleration due to gravity = -9.8 m/[tex]sec^{2}[/tex] =  - 9.8 x 3.281 = - 32.154 ft/ [tex]sec^{2}[/tex]

Net deceleration = 24 - 32.154 = - 8.15 ft/ [tex]sec^{2}[/tex]

at maximum height v = 0

[tex]v^{2}[/tex] = [tex]u^{2}[/tex] + 2ah

⇒  0 = [tex]44^{2}[/tex] + 2 (-8.15)h

⇒ h = 118.72 ft⇒

118.72 = 12[tex]t^{2}[/tex] + 44t + 16

⇒ [tex]12t^{2} +44t[/tex] - 102.72 = 0

⇒  t = -44 ± [tex]\sqrt{44^{2} - 4(12)(102.72) }[/tex]     / (2 x 12)

t = 0.447 sec