Respuesta :

The measure of the angles are [tex]\angle A=36.87^{\circ}[/tex], [tex]\angle B=36.87^{\circ}[/tex], [tex]\angle C=143.13^{\circ}[/tex] and [tex]\angle D=143.13^{\circ}[/tex]

Explanation:

The height of an isosceles trapezoid is 6.

The bases are 4 and 20.

The image of the trapezoid showing these measurements is attached below:

Thus, DC = 4 and AB = 20.

Using pythagorean theorem,

AB = [tex]\sqrt{8^2+6^2} =\sqrt{64+36} =10[/tex]

Thus, AB = 10

Now, we shall determine the angles [tex]\angle A, \angle B, \angle C[/tex] and [tex]\angle D[/tex]

[tex]\sin \angle A=\frac{6}{10}[/tex]

    [tex]\angle A=sin^{-1}(\frac{6}{10})[/tex]

    [tex]\angle A=36.87^{\circ}[/tex]

To determine [tex]\angle D[/tex], let us add [tex]\angle A[/tex] and [tex]\angle D[/tex] and equating it to 180°

  [tex]\angle A+ \angle D=180[/tex]

[tex]36.87+\angle D=180[/tex]

           [tex]\angle D=143.13^{\circ}[/tex]

Since, [tex]\angle A=\angle B[/tex] and [tex]\angle D=\angle C[/tex] , we have,

[tex]\angle B=36.87^{\circ}[/tex] and [tex]\angle C=143.13^{\circ}[/tex]

Thus, the measures of the angles of the trapezoid are [tex]\angle A=36.87^{\circ}[/tex], [tex]\angle B=36.87^{\circ}[/tex], [tex]\angle C=143.13^{\circ}[/tex] and [tex]\angle D=143.13^{\circ}[/tex]

Ver imagen vijayalalitha