Answer:
The stuntman will not make it
Explanation:
At the bottom of the swing, the equation of the forces acting on the stuntman is:
[tex]T-mg = m\frac{v^2}{r}[/tex]
where:
T is the tension in the rope (upward)
mg is the weight of the man (downward), where
m = 82.5 kg is his mass
[tex]g=9.8 m/s^2[/tex] is the acceleration due to gravity
[tex]m\frac{v^2}{r}[/tex] is the centripetal force, where
v = 8.65 m/s is the speed of the man
r = 12.0 m is the radius of the circule (the length of the rope)
Solving for T, we find the tension in the rope:
[tex]T=mg+m\frac{v^2}{r}=(82.5)(9.8)+(82.5)\frac{8.65^2}{12.0}=1322 N[/tex]
Since the rope's breaking strength is 1000 N, the stuntman will not make it.