A 2.00 kg particle has the xy coordinates (−1.20 m, 0.500 m), and a 4.00 kg particle has the xy coordinates (0.600 m, −0.750 m). Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 3.00 kg particle such that the center of mass of the three-particle system has the coordinates (−0.500 m, −0.700 m)?

Respuesta :

Answer:

[tex](x_{3},y_{3})=(-1.50\ m, -1.43\ m)[/tex]

Step-by-step explanation:

Given:

Mass of the first particle [tex]m_{1} =2.0\ kg[/tex]

Mass of the second particle [tex]m_{2} =4.0\ kg[/tex]

Mass of the third particle [tex]m_{3} =\ ?[/tex]

xy coordinate of the first particle [tex](x_{1},y_{1})=(-1.20 m, 0.500 m)[/tex]

xy coordinate of the second particle [tex](x_{2},y_{2})=(0.600 m, -0.750 m)[/tex]

coordinate of the centre of mass of three-particle system [tex](x_{cm},y_{cm})=(-0.500 m, -0.700 m)[/tex]

We need to find the xy coordinate of the third particle.

Solution:

First we calculate total mass of the three-particle system.

[tex]M = m_{1}+m_{2}+m_{3}[/tex]

[tex]M = 2.0+4.0+3.0[/tex]

[tex]M = 9.0\ kg[/tex]

x coordinate of the centre of mass of the three-particle system are given as;

[tex]x_{cm}=\frac{1}{M}(m_{1}x_{1}+ m_{2}x_{2}+ m_{3}x_{3})[/tex]

Rewrite the equation for [tex]x_{3}[/tex]

[tex]m_{3}x_{3}=Mx_{cm}-m_{1}x_{1}-m_{2}x_{2}[/tex]

Part a.

[tex]x_{3}=\frac{1}{m_{3}} (Mx_{cm}-m_{1}x_{1}-m_{2}x_{2})[/tex]

Substitute all given values in above equation.

[tex]x_{3}=\frac{1}{3.0} (9.0\times (-0.5)-2.0\times (-1.20)-4.0\times (0.6))[/tex]

[tex]x_{3}=-1.50\ m[/tex]

Part b.

Similarly for [tex]y_{3}[/tex] coordinate.

[tex]y_{3}=\frac{1}{m_{3}} (My_{cm}-m_{1}y_{1}-m_{2}y_{2})[/tex]

Substitute all given values in above equation.

[tex]y_{3}=\frac{1}{3.0} (9.0\times (-0.7)-2.0\times 0.5-4.0\times (-0.75))[/tex]

[tex]y_{3}=-1.43\ m[/tex]

Therefore, xy coordinate of the third particle [tex](x_{3},y_{3})=(-1.50\ m, -1.43\ m)[/tex]