Answer:
y = [tex]\frac{1}{8}[/tex] x - 3
Step-by-step explanation:
Use the midpoint formula
Given (x₁, y₁ ) and (x₂, y₂ ) then the midpoint is
[ [tex]\frac{1}{2}[/tex] (x₁ + x₂ ), [tex]\frac{1}{2}[/tex] (y₁ + y₂ ) ]
Here (x₁, y₁ ) = (7, 3) and (x₂, y₂ ) = (9, - 7), thus
midpoint = [ [tex]\frac{1}{2}[/tex] (7 + 9), [tex]\frac{1}{2}[/tex] (3 - 7 ) ] = (8, - 2)
-----------------------------------------------------------
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Rearrange 5x - 6 = 2y into this form by dividing all terms by 2
y = [tex]\frac{5}{2}[/tex] x - 3 ← in slope- intercept form
with y- intercept c = - 3 ⇒ (0, - 3 )
-------------------------------------------------------------
Calculate m using the slope formula
m = (y₂ - y₁ ) / (x₂, x₁ )
with (x₁, y₁ ) = (8, - 2) and (x₂, y₂ ) = (0, - 3)
m = [tex]\frac{-3+2}{0-8}[/tex] = [tex]\frac{-1}{-8}[/tex] = [tex]\frac{1}{8}[/tex]
y = [tex]\frac{1}{8}[/tex] x - 3 ← equation of line