k1RuL30
contestada

Write an equation in point-slope form for the line that has a slope of 56 and contains the point (−8,−4).

Respuesta :

Step-by-step explanation:

Given: slope of line m = 56 & line contain point is (−8,−4).

[tex] \therefore (x_1, \:\: y_1) = (-8, \:\: - 4)[/tex]

Equation of line in slope point form is given as:

[tex]y - y_1 =m(x - x_1) \\ \\ \therefore \: y - ( - 4) = 56 \{x - ( - 8) \} \\ \\ \blue{ \boxed{\therefore \: y + 4= 56 (x + 8) }}\\ ..(this \: is \: the \: equation \: of \: line \: in \: \\ slope \: point \: form)\\ \\ \therefore \: y + 4= 56x + 56 \times 8 \\ \\ \therefore \: y + 4= 56x + 448 \\ \\ \therefore \: y = 56x + 448 - 4 \\ \\ \huge \red{ \boxed{\therefore \: y = 56x + 444 }}\\ ..(this \: is \: the \: equation \: of \: line \: in \: \\ slope \: intercept \: form)[/tex]

Answer:

y+4 = 56(x+8)

Step-by-step explanation:

y-y1 = m(x-x1)

y-(-4) = 56(x-(-8))

y+4 = 56(x+8)

If needed, simply it further

y+4 = 56x+448

y = 56x+444