Respuesta :
Step-by-step explanation:
Given: slope of line m = 56 & line contain point is (−8,−4).
[tex] \therefore (x_1, \:\: y_1) = (-8, \:\: - 4)[/tex]
Equation of line in slope point form is given as:
[tex]y - y_1 =m(x - x_1) \\ \\ \therefore \: y - ( - 4) = 56 \{x - ( - 8) \} \\ \\ \blue{ \boxed{\therefore \: y + 4= 56 (x + 8) }}\\ ..(this \: is \: the \: equation \: of \: line \: in \: \\ slope \: point \: form)\\ \\ \therefore \: y + 4= 56x + 56 \times 8 \\ \\ \therefore \: y + 4= 56x + 448 \\ \\ \therefore \: y = 56x + 448 - 4 \\ \\ \huge \red{ \boxed{\therefore \: y = 56x + 444 }}\\ ..(this \: is \: the \: equation \: of \: line \: in \: \\ slope \: intercept \: form)[/tex]
Answer:
y+4 = 56(x+8)
Step-by-step explanation:
y-y1 = m(x-x1)
y-(-4) = 56(x-(-8))
y+4 = 56(x+8)
If needed, simply it further
y+4 = 56x+448
y = 56x+444