Carry out the fast exponentiation algorithm to evaluate 32n mod 13 for n = 0,1 and 2. These three values suce to derive a formula for 32n mod 13 for all non-negative integers n. State this formula and explain.

Respuesta :

Answer:

[tex]32n\,\,mod\,\,13=6n;\,\,n=0,1,2,3,...[/tex]

Step-by-step explanation:

[tex]a\,\,mod\,\,b[/tex] refers to the quotient that is obtained on dividing [tex]a[/tex] by [tex]b[/tex].

To find: [tex]32n\,\,mod\,\,13;\,\,n=0,1,2[/tex]

Solution:

For n = 0:

[tex]32n\,\,mod\,\,13=0\,\,mod\,\,13=0[/tex]

For n = 1:

[tex]32n\,\,mod\,\,13=32\,\,mod\,\,13=6[/tex]

For n = 2:

[tex]32n\,\,mod\,\,13=64\,\,mod\,\,13=12[/tex]

Therefore,

[tex]32n\,\,mod\,\,13=0\,\,mod\,\,13=0=0\times 6\\32n\,\,mod\,\,13=32\,\,mod\,\,13=6=1\times 6\\32n\,\,mod\,\,13=64\,\,mod\,\,13=12=2\times 6[/tex]

To find: general formula for [tex]32n\,\,mod\,\,13[/tex]

So, as per the pattern, [tex]32n\,\,mod\,\,13=6n;\,\,n=0,1,2,3,...[/tex]