Answer:
[tex]32n\,\,mod\,\,13=6n;\,\,n=0,1,2,3,...[/tex]
Step-by-step explanation:
[tex]a\,\,mod\,\,b[/tex] refers to the quotient that is obtained on dividing [tex]a[/tex] by [tex]b[/tex].
To find: [tex]32n\,\,mod\,\,13;\,\,n=0,1,2[/tex]
Solution:
For n = 0:
[tex]32n\,\,mod\,\,13=0\,\,mod\,\,13=0[/tex]
For n = 1:
[tex]32n\,\,mod\,\,13=32\,\,mod\,\,13=6[/tex]
For n = 2:
[tex]32n\,\,mod\,\,13=64\,\,mod\,\,13=12[/tex]
Therefore,
[tex]32n\,\,mod\,\,13=0\,\,mod\,\,13=0=0\times 6\\32n\,\,mod\,\,13=32\,\,mod\,\,13=6=1\times 6\\32n\,\,mod\,\,13=64\,\,mod\,\,13=12=2\times 6[/tex]
To find: general formula for [tex]32n\,\,mod\,\,13[/tex]
So, as per the pattern, [tex]32n\,\,mod\,\,13=6n;\,\,n=0,1,2,3,...[/tex]