A large capacitor in an air conditioner is typically connected to the potential difference provided to your house (120 V). Although capacitors like this are usually cylindrical, model this one as a parallel plate capacitor with square plates separated by 2.0 mm. If you want your capacitor to store 0.25 J of energy, what is the area of the capacitor plates?

Respuesta :

Answer:

[tex]A=7.72\times 10^{-18}\ m^2[/tex]

Explanation:

Given:

  • the voltage of the source, [tex]V=120\ V[/tex]
  • distance of separation between the capacitor plates, [tex]d=2\times 10^{-3}\ J[/tex]
  • energy of the capacitor, [tex]U=0.25\ J[/tex]

Assuming that there is free space between the plates, so the permittivity, [tex]\epsilon=9\times 10^{9}\ N.m^2.C^{-2}[/tex]

We have the energy stored in a capacitor as:

[tex]U=\frac{1}{2}\times \frac{\epsilon.A.V^2}{d}[/tex]

[tex]0.25=0.5\times \frac{9\times 10^{9}\times A\times 120^2}{2\times 10^{-3}}[/tex]

[tex]A=7.72\times 10^{-18}\ m^2[/tex]

Explanation:

Formula for energy stored in the capacitor is as follows.

               E = [tex]\frac{1}{2}CV^{2}[/tex]

or,          C = [tex]\frac{2E}{V^{2}}[/tex]

The given data is as follows.

                  E = 0.25 J,        V = 120 V

Putting the given values into the above formula as follows.

                   C = [tex]\frac{2E}{V^{2}}[/tex]

                       = [tex]\frac{2 \times 0.25 J}{(120)^{2}}[/tex]

                       = [tex]3.47 \times 10^{-5}[/tex] F

Also,          C = [tex]\frac{\epsilon_{o} A}{d}[/tex]

or,               A = [tex]\frac{Cd}{\epsilon_{o}}[/tex]

Putting the given values into the above formula as follows.

              A = [tex]\frac{Cd}{\epsilon_{o}}[/tex]

                  = [tex]\frac{3.47 \times 10^{-5} \times 2 \times 10^{-3}}{8.85 \times 10^{-12}}[/tex]

                  = 7846.82 [tex]m^{2}[/tex]

Thus, we can conclude that area of the capacitor plates is 7846.82 [tex]m^{2}[/tex].