A gas contained within a piston-cylinder assembly undergoes three processes in series________.
a. Process 1-2: Constant volume from p1 = 1 bar, v1 = 4 m3 to state 2, where p2 = 2 bar.
b. Process 2-3: Compression to v3 = 2 m3, during which the pressure-volume relationship is pV = constant.
c. Process 3-4: Constant pressure to state 4, where v4 = 1 m3.
d. Sketch the processes in series on p-V coordinates and evaluate the work for each process, in kJ.

Respuesta :

Answer:

a. [tex]W_{1-2}=0\ J[/tex]

b. [tex]W_{2-3}=-554517.74\ J[/tex]

c. [tex]W_{3-4}=-400\ kJ[/tex]

Explanation:

Given:

  • Constant volume process 1-2:

pressure at point 1, [tex]P_1=1\ bar=100000\ Pa[/tex]

pressure at point 2, [tex]P_2=2\ bar=200000\ Pa[/tex]

volume at point 1, [tex]V_1=V_2=4\ m^3[/tex]

  • Isothermal process PV=constt. 2-3:

volume at point 3, [tex]V_3=2\ m^3[/tex]

volume at point 2,  [tex]V_2=4\ m^3[/tex]

pressure at point 2, [tex]P_2=2\ bar=200000\ Pa[/tex]

  • Constant pressure process 3-4:

volume at point 4, [tex]V_4=1\ m^3[/tex]

a.

Work done in process 1-2:

Being isochoric process:

[tex]dV=0[/tex]

and

[tex]W=P.dV[/tex]

so,

[tex]W_{1-2}=0\ J[/tex]

b.

Now we apply the ideal gas equation for the process 2-3:

[tex]P_2.V_2=P_3.V_3[/tex]

[tex]200000\times 4=P_3\times 2[/tex]

[tex]P_3=400000\ Pa=4\ bar[/tex]

Now work done in an isothermal process:

[tex]W_{2-3}=P_2.V_2\times ln(\frac{V_3}{V_2} )[/tex]

[tex]W_{2-3}=200000\times 4\times\ln(\frac{2}{4} )[/tex]

[tex]W_{2-3}=-554517.74\ J[/tex] -ve means work is consumed by the system

c.

Now for the isobaric process 3-4 we apply the ideal gas law:

Since the process is isobaric so,

[tex]P_4=P_3=4\ bar[/tex]

[tex]V_3=2\ m^3[/tex]

[tex]V_4=1\ m^3[/tex]

Now the work done:

[tex]W_{3-4}=P_3.dV[/tex]

[tex]W_{3-4}=400000\times (1-2)[/tex]

[tex]W_{3-4}=-400\ kJ[/tex]

Ver imagen creamydhaka