A railroad diesel engine weighs four times as much as a freight car. The diesel engine coasts at 5 km/h into a freight car that is initially at rest. Use the conservation of momentum to show that after they couple together, the engine + car coast at 4 km/h.

Please show work!!!! step by step

Respuesta :

Explanation:

Conservation of momentum :

[tex]m_1u_1+m_2u_2=m_1v_1+m_1v_2[/tex]

Where :

[tex]m_1, m_2[/tex] = masses of object collided

[tex]u_1,u_2[/tex] = initial velocity before collision

[tex]v_1,v_2[/tex] = final velocity after collision

We have :

Mass of an engine = [tex]m_1=4M[/tex]

Mass of an car= [tex]m_2=M[/tex]

Initial velocity of railroad engine [tex]m_1=u_1=5 km/h[/tex]

Initial velocity of car [tex]m_2=u_2=0 km/h[/tex] (rest)

Final velocity of  railroad engine [tex]m_1=v_1=v[/tex] (same direction )

Final velocity of car [tex]m_2=v_2=v[/tex] (same direction)

[tex]4M\times 5km/h+M(0 km/h)=4Mv+Mv[/tex]

[tex]4\times 5 km/h=5M[/tex]

v = 4 km/h

The speed of the engine and car after they coupled together is 4 km/h.