Solve the compound inequality. Write the solution in interval notation.

-7x > -35 or x + 7 > 4
(-3, ∞)
(-3, 5)
(-∞, ∞)
(-∞, -3) ∪ (5, ∞)

Respuesta :

Option C: [tex](-\infty, \infty)[/tex] is the solution in interval notation.

Explanation:

The expression is [tex]-7 x>-35 \text { or } x+7>4[/tex]

First let us solve the expression [tex]-7 x>-35[/tex]

Dividing both sides by -7, we have,

[tex]x<5[/tex] ------------(1)

Similarly solving the expression [tex]x+7>4[/tex]

Subtracting both sides by 7, we get,

[tex]x>-3[/tex] --------------(2)

Substituting (1) and (2) in the original equation [tex]-7 x>-35 \text { or } x+7>4[/tex], we get,

[tex]x<5 or x>-3[/tex]

Thus, writing it in interval notation, we have,

[tex](-\infty,5) U (-3,\infty)[/tex]

Thus, the union of the two intervals in [tex](-\infty, \infty)[/tex]

Hence, Option C is the correct answer.