A robot arm moves so that P travels in a circle about point B, rvhich is not moving. Knowing that P starts from rest, and its speed increases at a constant rate of 10 mm/s^2. determine (a) the rnagnitude ol the acceleration when t : 4 s. (b) the time for the magnitude of the acceleration to be 80 mm/s^2

Respuesta :

Answer:

a.[tex]10.2mm/s^2[/tex]

b.25.2 s

Explanation:

We are given that

Initial velocity=0

Tangential acceleration=[tex]a_t=10mm/s^2[/tex]

[tex]r=0.8 m=0.8\times 10^3 mm=800mm[/tex]

By using [tex]1 m=10^3 mm[/tex]

a.t=4 s

[tex]a_t=\frac{v-u}{t}[/tex]

Using the formula

[tex]10=\frac{v}{4}[/tex]

[tex]v=4\times 10=40mm/s[/tex]

Normal acceleration=[tex]a_N=\frac{v^2}{r}[/tex]

Substitute the values

Normal acceleration=[tex]a_N=\frac{(40)^2}{800}=2mm/s^2[/tex]

Magnitude of acceleration=a=[tex]\sqrt{a^2_t+a^2_N}[/tex]

Using the formula

Magnitude of acceleration=a[tex]=\sqrt{(10)^2+(2)^2}=10.2mm/s^2[/tex]

Magnitude of acceleration=a=[tex]10.2mm/s^2[/tex]

b.Magnitude of acceleration=a=[tex]80mm/s^2[/tex]

[tex]a^2=a^2_t+a^2_N[/tex]

Substitute the values

[tex](80)^2=(10)^2+a^2_N[/tex]

[tex]6400=100+a^2_N[/tex]

[tex]a^2_N=6400-100=6300[/tex]

[tex]a_N=\frac{a^2_t t^2}{r}[/tex]

[tex]\sqrt{6300}=\frac{(10)^2t^2}{800}[/tex]

[tex]t^2=\frac{\sqrt{6300}\times 800}{100}[/tex]

[tex]t=\sqrt{\frac{\sqrt{6300}\times 800}{100}}[/tex]

[tex]t=25.2 s[/tex]

Hence, the time for the magnitude of the acceleration to be [tex]80mm/s^2[/tex]=25.2 s

The magnitude ol the acceleration when t : 4s is 10.2mm/s^2 and the time for the magnitude of the acceleration to be 80 mm/s^2 is 25.2s.

Parameters and Calculations:

The initial velocity is zero

Tangential acceleration a1= 10mm/s^2

r= 0.8 x 10^3 mm= 800mm

Using the formula

10= v/4

v= 4 x 10= 40mm/s^2

Magnitude of acceleration

a= 80 mm/s^2

a^2= a^2t a^2n

Putting in the values

t= 25.2s

Read more about acceleration here:
https://brainly.com/question/14344386