Answer:
[tex]m = \frac{-4.4}{7.4}[/tex]
Explanation:
magnification is the ratio of distance of image to distance of object
i.e. [tex]m = -\frac{d_i}{d_o}[/tex]
[tex]d_i = -4.4 d_o[/tex]
As per the lens equation,
[tex]\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}[/tex]
We will calculate the focal length of the mirror
[tex]\frac{1}{yd_o} + \frac{1}{-4.4d_o} = \frac{1}{f} \\\frac{4.4 -1}{4.4} \frac{1}{d_o} = \frac{1}{f}\\f = \frac{4.4}{3.4} d_o[/tex]
Now for convex mirror only the sign will change
Thus, focal length would be equal to
[tex]f = - \frac{4.4}{3.4} d_o[/tex]
Plugging this value into lens equation, we get
[tex]\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \\\frac{1}{d_o} + \frac{1}{d_i} = \frac{-3.4}{4.4} \frac{1}{d_o} \\\frac{7.4}{4.4} \frac{1}{d_o} = \frac{1}{d_i}\\\frac{d_i}{d_o} = \frac{4.4}{7.4} \\m =- \frac{d_i}{d_o} \\\\m = - \frac{4.4}{7.4}[/tex]