Answer:
1Ai) [tex]x = 36.9^{o}[/tex]
1Aii) [tex]x = 11.5^{o}[/tex]
Step-by-step explanation:
Question 1a
[tex]cosx=0.8\\x= cos^{-1}(0.8)\\ x= 36.9^{o}[/tex]
[tex]sinx=0.2\\x=sin^{-1}(0.2)\\ x=11.5^{o}[/tex]
Question 2a
[tex]sin^{3}x+cos^{3}x = sin^{2}x(sinx)+cos^{2}x(cosx)\\ \\= (1-cos^{2}x)sinx+(1-sin^{2}x)cosx\\ \\= sinx-sinxcos^{2}x+cosx-sin^{2}xcosx\\ \\=sinx-sin^{2}xcosx+cosx-sinxcos^{2}x\\[/tex]
Factorize
[tex]sinx(1-sinxcosx)+cosx(1-sinxcosx)\\\\=(sinx+cosx)(1-sinxcosx)\\\\=(sinx+cosx)(1-sinx*cosx)[/tex]
Question 2b
[tex]sin^{4}x+ cos^{4}x=(sin^{2}x)^{2} + (cos^2}x)^{2} \\But , a^{2} +b^{2}=(a+b)^{2}-2ab\\ \\a = sin^{2}x\\ b = cos^{2}x\\\\Therefore, (sin^{2}x)^{2} + (cos^2}x)^{2} = (sin^{2}x+cos^{2}x)^{2}-2sin^{2}xcos^{2}x \\\\But, sin^{2}x+cos^{2}x = 1\\\\Therefore, (sin^{2}x+cos^{2}x)^{2}-2sin^{2}xcos^{2}x = 1 - 2sin^{2}xcos^{2}x\\\\= 1 - 2sin^{2}x*cos^{2}x[/tex]