Respuesta :

[tex](2.5a^{8n})^3 . (0.4^{7n})^3 = 15.625 \times a^{24n} \times (0.4^{21})^n[/tex]

Solution:

We have to simplify the given expression

Given expression is:

[tex](2.5a^{8n})^3 . (0.4^{7n})^3[/tex]

Use the law of exponent

[tex](a^m)^n = a^{mn}[/tex]

Thus the given expression becomes,

[tex](2.5a^{8n})^3 . (0.4^{7n})^3 = (2.5)^3(a)^{8n \times 3} \times (0.4)^{7n \times 3}[/tex]

Simplify the exponents

[tex](2.5a^{8n})^3 . (0.4^{7n})^3 = 15.625 \times a^{24n} \times 0.4^{21n}[/tex]

Again use the law of exponent for [tex]0.4^{21n}[/tex]

[tex]0.4^{21n} = (0.4^{21})^n[/tex]

Substitute in above expression

[tex](2.5a^{8n})^3 . (0.4^{7n})^3 = 15.625 \times a^{24n} \times (0.4^{21})^n[/tex]

Thus the given expression is simplified