Respuesta :

Answer:

The perimeter of the polygon is 48

Step-by-step explanation:

Given: [tex]\angle B \cong \angle D[/tex]

Step 1: To find the the lengths of the polygon, the circle theorem states that, "Two tangents from an external point to a circle are always equal in length".

Thus, the length of the line segment [tex]A B=5+6=11[/tex]

The length of the line segment [tex]B C=6+7=13[/tex]

Since, [tex]\angle B \cong \angle D[/tex],

The length of the line segment [tex]C D=7+6=13[/tex]

The length of the line segment [tex]D A=5+6=11[/tex]

Step 2: To find the perimeter of the polygon, add the length of the line segment.

[tex]\begin{aligned}\text {Perimeter} &=A B+B C+C D+D A \\&=11+13+13+11 \\&=48\end{aligned}[/tex]

Thus, the perimeter of the polygon is 48.