the sum of the digits of a two dgit no. is 7 if the no. formed by interchanging the digits is less than the original no. by 27 then the original no. is?

Respuesta :

Answer:

The Original number is 52

Explanation:

Let the two digits be x and y

The , The sum of the two Digits is 7

So

x +y = 7

x = 7-y-------------------------------(1)

The original number is [tex]x \times 10 +y[/tex]---------------(2)

Now if we interchange the digits

The interchanged number will be   [tex]y \times 10 + x[/tex]---------(3)

Interchanged = Original – 27

[tex]y \times 10 + x = x \times 10 + y -27[/tex]

[tex]10y + x =10x + y -27[/tex]

Group the like terms

[tex]10y -y =10x -x -27[/tex]

[tex]9y = 9x -27[/tex]--------------------------(4)

Substituting (1) in(4)

[tex]9y = 9(7-y) -27[/tex]

[tex]9y = 63 -9y -27[/tex]

[tex]9y+9y = 63-27[/tex]

[tex]18 y = 36[/tex]

[tex]y =\frac{36}{18}[/tex]

y = 2-------------------------------------(5)

Substituting (5) in(1)

x = 7 -y

x =7-2

x =5

Now From eq(1)

The original number will be

=10x +y

= 10(5) +2

= 50 +2

=52