Use a system of linear equations to find the quadratic function
f(x) = ax2 + bx + c
that satisfies the given conditions. Solve the system using matrices.
f(−2) = −11, f(1) = −5, f(2) = −23

Respuesta :

Answer:

[tex]f(x)=-2x^2-3x-9[/tex]

Step-by-step explanation:

Let [tex]f(x)=ax^2+bx+c[/tex] be the quadratic function.

[tex]f(-2)=-11[/tex] implies that [tex]a(-2)^2+b(-2)+c=-11[/tex]

[tex]4a-2b+c=-11......(1)[/tex]

Similarly, [tex]f(1)=-5\implies a(1)^2+b(1)+c=-5\implies a+b=-5....(2)[/tex]

and [tex]f(2)=-23\implies a(2)^2+b(2)+c=-23\implies 4a+2b+c=-23...(3)[/tex]

From equation 2, [tex]a=-b-5...(4)[/tex]

Put (4) into (1) to get:

[tex]4(-b-5)-2b+c=-11\implies -6b+c=9....(5)[/tex]

Put (4) in (3) to get:

[tex]4(-b-5)+2b+c=-23\implies -2b+c=-3---(6)[/tex]

Subtract (6) from (5) to get:

[tex]-4b=12[/tex]

[tex]b=-3[/tex]

Put b=-3 in (4) to get:

a=--3-5=-2

Put b=-3 in to (6) to get:

-2(-3)+c=-3

6+c=-3

c=-6+-3=-9

Therefore the required equation is [tex]f(x)=-2x^2-3x-9[/tex]