contestada

d) Find the equations of the lines through YZ
and AB in slope intercept form.
Y(-6,24), z(4,-10), A(-3,-8) and B(-1,2)

Respuesta :

Answer:

A) The equation of line yz passing through point (- 6 , 24) and (4 , -10) is y =  [tex]\frac{-17}{5}[/tex] x + [tex]\frac{18}{5}[/tex]

B) The equation of line AB passing through point (- 3 , - 8) and (- 1 , 2) is y = 5 x + 7

Step-by-step explanation:

Given as

A ) The points are

y = [tex]x_1[/tex] , [tex]y_1[/tex] = - 6 , 24

z = [tex]x_2[/tex] , [tex]y_2[/tex] = 4 , - 10

Let The slope of line yz = m

So , m = [tex]\dfrac{y_2- y_1}{x_2-x_1}[/tex]

Or, m = [tex]\dfrac{-10-24}{4+6}[/tex]

Or, m = [tex]\frac{-17}{5}[/tex]

The equation of the line yz can be written as

y -  [tex]y_1[/tex] = m ( x - [tex]x_1[/tex])

where m is the slope of the line

So, y - 24 = m ( x - (-6))

Or, y - 24 =   [tex]\frac{-17}{5}[/tex] ( x + 6)

Or, 5 ×(y - 24) = -17× (x + 6)

Or, 5 y - 120 = -17 x - 102

Or, 5 y = -17 x -102 + 120

Or, 5 y = -17 x + 18

Or, y =  [tex]\frac{-17}{5}[/tex] x + [tex]\frac{18}{5}[/tex]

Hence , The equation of line yz passing through point (- 6 , 24) and (4 , -10) is y =  [tex]\frac{-17}{5}[/tex] x + [tex]\frac{18}{5}[/tex]   . Answer

B)  The points are

A = [tex]x_1[/tex] , [tex]y_1[/tex] = - 3 , - 8

B = [tex]x_2[/tex] , [tex]y_2[/tex] = - 1 , 2

Let The slope of line AB = M

So , M = [tex]\dfrac{y_2- y_1}{x_2-x_1}[/tex]

Or, M = [tex]\frac{2+8}{-1+3}[/tex]

Or, M = 5

The equation of the line yz can be written as

y -  [tex]y_1[/tex] = M ( x - [tex]x_1[/tex])

where m is the slope of the line

So, y - (-8) = M ( x - (-3))

Or, y +8 =   5 ( x + 3)

Or, (y + 8) = 5 × (x + 3)

Or, y + 8 = 5 x + 15

Or,  y = 5 x + 15 - 8

Or, y = 5 x + 7

Hence , The equation of line AB passing through point (- 3 , - 8) and (- 1 , 2) is y = 5 x + 7   . Answer