A student ran the following reaction in the laboratory at 671 K: 2NH3(g) N2(g) + 3H2(g) When she introduced 7.33×10-2 moles of NH3(g) into a 1.00 liter container, she found the equilibrium concentration of H2(g) to be 0.103 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc =

Respuesta :

Answer:

Kc = 8.05x10⁻³

Explanation:

This is the equilibrium:

                 2NH₃(g)   ⇄     N₂(g)     +     3H₂(g)

Initially       0.0733

React         0.0733α          α/2                3/2α

Eq     0.0733 - 0.0733α    α/2                0.103

We introduced 0.0733 moles of ammonia, initially. So in the reaction "α" amount react, as the ratio is 2:1, and 2:3, we can know the moles that formed products.

Now we were told that in equilibrum we have a [H₂] of 0.103, so this data can help us to calculate α.

3/2α = 0.103

α = 0.103 . 2/3 ⇒ 0.0686

So, concentration in equilibrium are

NH₃ = 0.0733 - 0.0733 . 0.0686 = 0.0682

N₂ = 0.0686/2 = 0.0343

So this moles, are in a volume of 1L, so they are molar concentrations.

Let's make Kc expression:

Kc= [N₂] . [H₂]³ / [NH₃]²

Kc = 0.0343 . 0.103³ / 0.0682² = 8.05x10⁻³