Respuesta :

Answer:

The three points for the line  2y = 5x + 11 are

point A( x₁ , y₁) ≡ ( 1 , 8)

point B( x₂ , y₂) ≡ (3 , 13)

point C(x₃ , y₃ ) ≡ (-1 , 3)

The Graph is attached below.

Step-by-step explanation:

Given:

[tex]2y = 5x + 11[/tex]........... equation of a line

Let the points be point A, B and point C  

To Find:

point A( x₁ , y₁) ≡  ?

point B( x₂ , y₂) ≡ ?

point C(x₃ , y₃ ) ≡ ?

Solution:

For Drawing a graph we require minimum two points but we will have here three points.

For point A( x₁ , y₁)

Put x = 1 in the given equation we get

2y = 5 × 1 + 11

2y = 16

∴ [tex]y=\dfrac{16}{2} \\\\y=8[/tex]

∴ point A( x₁ , y₁) ≡ ( 1 , 8)

For point B( x₂ , y₂)

Put x= 3 in the given equation we get

2y = 5 × 3 + 11

2y = 26

∴ [tex]y=\dfrac{26}{2} \\\\y=13[/tex]  

∴ point B( x₂ , y₂)  ≡ (3 , 13)

For point C(x₃ , y₃ )

Put y = 3 in the given equation we get  

2 × 3 = 5x+ 11

5x = -5

[tex]x =\dfrac{-5}{5}=-1[/tex]

∴ point C(x₃ , y₃ )≡ (-1 , 3)

Therefore,

The three points for the line  2y = 5x + 11 are

point A( x₁ , y₁) ≡ ( 1 , 8)  (blue color point on the graph)

point B( x₂ , y₂)  ≡ (3 , 13)  (green color point on the graph)

point C(x₃ , y₃ )≡ (-1 , 3) (purple color point on the graph)

The Graph is attached below..

Ver imagen inchu420