Answer:
A)
[tex]y = \frac{10}{3}x[/tex]
B) 240 pages
Step-by-step explanation:
From the table, he can read 20 pages in 6 minutes and 15 paged in 50 minutes.
The unit rate can be found using
[tex] m = \frac{change \: in \: y}{change \: in \: x} [/tex]
[tex]m = \frac{50 - 20}{15 - 6} [/tex]
[tex]m = \frac{30}{9} = \frac{10}{3} [/tex]
Using the point (6,20) and the unit rate we can find the equation using
[tex]y-y_1=m(x-x_1)[/tex]
[tex]y - 20 = \frac{10}{3}(x - 6)[/tex]
[tex]y=\frac{10}{3}x - 20 + 20[/tex]
[tex]y = \frac{10}{3}x[/tex]
B) When x=72 minutes we substitute
[tex]y = \frac{10}{3} \times 72[/tex]
[tex]y = 10 \times 24 = 240[/tex]