Respuesta :
Answer:
1) Expression is
[tex](n+1)+(n^3+3n^2+2n)=n^3+3n^2+3n+1[/tex]
2) The standard form of the expression is
[tex]n^3+3n^2+3n+1=(n+1)^3[/tex]
3) The expression is
[tex]n^3+3n^2+3n+1=(n+1)^3[/tex]
Where [tex](n+1)^3[/tex] is the cube of the middle integer
Step-by-step explanation:
1) Given three consecutive integers are n. n+1, and n+2
Now multiplying the three consecutive integers
[tex](n)(n+1)(n+2)=(n^2+n)(n+2)[/tex]
[tex]=n^3+2n^2+n^2+2n[/tex]
[tex]=n^3+3n^2+2n[/tex]
Therefore [tex](n)(n+1)(n+2)=n^3+3n^2+2n[/tex]
Now adding the middle integer to the result of the multiplication.
ie, adding (n+1) to the result of the multiplication [tex]n^3+3n^2+2n[/tex]
[tex](n+1)+(n^3+3n^2+2n)=n+1+n^3+3n^2+2n[/tex]
[tex]=3n+1+n^3+3n^2[/tex]
Therefore [tex](n+1)+(n^3+3n^2+2n)=n^3+3n^2+3n+1[/tex]
2) Expression is [tex]n^3+3n^2+3n+1[/tex]
Now we simplify the above expression
[tex]n^3+3n^2+3n+1=n^3+3n^2(1)+3(n)(1)^2+1^3[/tex]
[tex]=(n+1)^3[/tex] (by using [tex](a+b)^3=a^3+3a^2b+3ab^2+b^3[/tex] , Here a = n and b=1)
[tex]n^3+3n^2+3n+1=(n+1)^3[/tex]
3) The expression is
[tex]n^3+3n^2+3n+1=(n+1)^3[/tex]
Where [tex](n+1)^3[/tex] is the cube of the middle integer.
ie, expression is equivalent to the cube of the middle integer