Answer:
354.72 m/s
Explanation:
[tex]m[/tex] = mass of lead bullet
[tex]c[/tex] = specific heat of lead = 128 J/(kg °C)
[tex]L[/tex] = Latent heat of fusion of lead = 24500 J/kg
[tex]T_{i}[/tex] = initial temperature = 27.4 °C
[tex]T_{f}[/tex] = final temperature = melting point of lead = 327.5 °C
[tex]v[/tex] = Speed of lead bullet
Using conservation of energy
Kinetic energy of bullet = Heat required for change of temperature + Heat of melting
[tex](0.5) m v^{2} = m c (T_{f} - T_{i}) + m L\\(0.5) v^{2} = c (T_{f} - T_{i}) + L\\(0.5) v^{2} = (128) (327.5 - 27.4) + 24500\\(0.5) v^{2} = 62912.8\\v = 354.72 ms^{-1}[/tex]