Answer: 28[tex]\sqrt{3}[/tex] - 9[tex]\sqrt{2}[/tex]
Step-by-step explanation:
5[tex]\sqrt{12}[/tex] + 4[tex]\sqrt{12}[/tex] - 3[tex]\sqrt{18}[/tex] + 2[tex]\sqrt{75}[/tex]
5[tex]\sqrt{12}[/tex] + 4[tex]\sqrt{12}[/tex] can be added together since they have the same radical, they will be treated as if you have 5 apples + 4 apples , which will be 9 apples
Therefore we have
9[tex]\sqrt{12}[/tex] - 3[tex]\sqrt{18}[/tex] + 2[tex]\sqrt{75}[/tex]
[tex]\sqrt{12}[/tex] = [tex]\sqrt{4}[/tex] X [tex]\sqrt{3}[/tex] = 2[tex]\sqrt{3}[/tex]
[tex]\sqrt{18}[/tex] = [tex]\sqrt{9}[/tex] X [tex]\sqrt{2}[/tex] = 3[tex]\sqrt{2}[/tex]
[tex]\sqrt{75}[/tex] = [tex]\sqrt{25}[/tex] X [tex]\sqrt{3}[/tex] = 5[tex]\sqrt{3}[/tex]
Returning them back into the expression , we have
9(2[tex]\sqrt{3}[/tex]) - 3(3[tex]\sqrt{2}[/tex]) + 2 (5[tex]\sqrt{3}[/tex])
⇒ 18[tex]\sqrt{3}[/tex] - 9[tex]\sqrt{2}[/tex] + 10[tex]\sqrt{3}[/tex]
= 28[tex]\sqrt{3}[/tex] - 9[tex]\sqrt{2}[/tex]