Respuesta :

Answer: x = 1 [tex]\frac{3}{7}[/tex] or x = -2

Step-by-step explanation:

The first step is to find the L.C.M of the L.H.S

[tex]\frac{9+7(2x-5)}{9(2x-5)}[/tex] = [tex]\frac{2}{x+5}[/tex]

⇒ [tex]\frac{9+14x-35}{9(2x-5)}[/tex] = [tex]\frac{2}{x+5}[/tex]

[tex]\frac{14x-26}{9(2x-5)}[/tex] = [tex]\frac{2}{x+5}[/tex]

cross multiplying , we have

(x+5)(14x - 26) = 18(2x-5)

Expanding, we have

[tex]14x^{2}[/tex] + 44x - 130 = 36x - 90

[tex]14x^{2}[/tex] + 44x - 130 - 36x + 90 = 0

[tex]14x^{2}[/tex] + 8x - 40 = 0

solving the resulting quadratic equation by factorization , we have

(14x - 20)(x + 2 ) = 0

14x - 20 = 0  or x + 2 = 0

14x = 20       or x = -2

x = 20/ 14      or x = -2

Therefore x = 10/7 or x = -2

x = 1 [tex]\frac{3}{7}[/tex] or x = -2